| 1: | eq(n__0,n__0) | → true | |
| 2: | eq(n__s(X),n__s(Y)) | → eq(activate(X),activate(Y)) | |
| 3: | eq(X,Y) | → false | |
| 4: | inf(X) | → cons(X,n__inf(n__s(X))) | |
| 5: | take(0,X) | → nil | |
| 6: | take(s(X),cons(Y,L)) | → cons(activate(Y),n__take(activate(X),activate(L))) | |
| 7: | length(nil) | → 0 | |
| 8: | length(cons(X,L)) | → s(n__length(activate(L))) | |
| 9: | 0 | → n__0 | |
| 10: | s(X) | → n__s(X) | |
| 11: | inf(X) | → n__inf(X) | |
| 12: | take(X1,X2) | → n__take(X1,X2) | |
| 13: | length(X) | → n__length(X) | |
| 14: | activate(n__0) | → 0 | |
| 15: | activate(n__s(X)) | → s(X) | |
| 16: | activate(n__inf(X)) | → inf(activate(X)) | |
| 17: | activate(n__take(X1,X2)) | → take(activate(X1),activate(X2)) | |
| 18: | activate(n__length(X)) | → length(activate(X)) | |
| 19: | activate(X) | → X | |
| 20: | EQ(n__s(X),n__s(Y)) | → EQ(activate(X),activate(Y)) | |
| 21: | EQ(n__s(X),n__s(Y)) | → ACTIVATE(X) | |
| 22: | EQ(n__s(X),n__s(Y)) | → ACTIVATE(Y) | |
| 23: | TAKE(s(X),cons(Y,L)) | → ACTIVATE(Y) | |
| 24: | TAKE(s(X),cons(Y,L)) | → ACTIVATE(X) | |
| 25: | TAKE(s(X),cons(Y,L)) | → ACTIVATE(L) | |
| 26: | LENGTH(nil) | → 0# | |
| 27: | LENGTH(cons(X,L)) | → S(n__length(activate(L))) | |
| 28: | LENGTH(cons(X,L)) | → ACTIVATE(L) | |
| 29: | ACTIVATE(n__0) | → 0# | |
| 30: | ACTIVATE(n__s(X)) | → S(X) | |
| 31: | ACTIVATE(n__inf(X)) | → INF(activate(X)) | |
| 32: | ACTIVATE(n__inf(X)) | → ACTIVATE(X) | |
| 33: | ACTIVATE(n__take(X1,X2)) | → TAKE(activate(X1),activate(X2)) | |
| 34: | ACTIVATE(n__take(X1,X2)) | → ACTIVATE(X1) | |
| 35: | ACTIVATE(n__take(X1,X2)) | → ACTIVATE(X2) | |
| 36: | ACTIVATE(n__length(X)) | → LENGTH(activate(X)) | |
| 37: | ACTIVATE(n__length(X)) | → ACTIVATE(X) | |